3.435 \(\int \frac{\tan ^4(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=120 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{a^{5/2} f}+\frac{(a-3 b) \tan (e+f x)}{3 a^2 b f \sqrt{a+b \tan ^2(e+f x)+b}}-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b \tan ^2(e+f x)+b\right )^{3/2}} \]

[Out]

ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(a^(5/2)*f) - ((a + b)*Tan[e + f*x])/(3*a*b*f*(a
 + b + b*Tan[e + f*x]^2)^(3/2)) + ((a - 3*b)*Tan[e + f*x])/(3*a^2*b*f*Sqrt[a + b + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.266793, antiderivative size = 120, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {4141, 1975, 470, 527, 12, 377, 203} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{a^{5/2} f}+\frac{(a-3 b) \tan (e+f x)}{3 a^2 b f \sqrt{a+b \tan ^2(e+f x)+b}}-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b \tan ^2(e+f x)+b\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(5/2),x]

[Out]

ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(a^(5/2)*f) - ((a + b)*Tan[e + f*x])/(3*a*b*f*(a
 + b + b*Tan[e + f*x]^2)^(3/2)) + ((a - 3*b)*Tan[e + f*x])/(3*a^2*b*f*Sqrt[a + b + b*Tan[e + f*x]^2])

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right ) \left (a+b \left (1+x^2\right )\right )^{5/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right ) \left (a+b+b x^2\right )^{5/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac{\operatorname{Subst}\left (\int \frac{a+b+(a-2 b) x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{3 a b f}\\ &=-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac{(a-3 b) \tan (e+f x)}{3 a^2 b f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{3 b (a+b)}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{3 a^2 b (a+b) f}\\ &=-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac{(a-3 b) \tan (e+f x)}{3 a^2 b f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{a^2 f}\\ &=-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac{(a-3 b) \tan (e+f x)}{3 a^2 b f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{a^2 f}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{a^{5/2} f}-\frac{(a+b) \tan (e+f x)}{3 a b f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac{(a-3 b) \tan (e+f x)}{3 a^2 b f \sqrt{a+b+b \tan ^2(e+f x)}}\\ \end{align*}

Mathematica [B]  time = 6.54829, size = 409, normalized size = 3.41 \[ \frac{\sec ^4(e+f x) (a \cos (2 (e+f x))+a+2 b)^{5/2} \left (\frac{\sqrt{2} \csc (e+f x) \sec (e+f x) \left (\frac{16 \left (-a \sin ^2(e+f x)+a+b\right ) \left (1-\frac{a \sin ^2(e+f x)}{a+b}\right ) \left (\frac{a^2 (a+b) \sin ^4(e+f x)}{\left (-a \sin ^2(e+f x)+a+b\right )^2}+\frac{3 \sqrt{a} \sqrt{a+b} \sin (e+f x) \sin ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{a+b}}\right )}{\sqrt{\frac{-a \sin ^2(e+f x)+a+b}{a+b}}}-\frac{6 a (a+b) \sin ^2(e+f x)}{a \cos (2 (e+f x))+a+2 b}\right )}{a^3}-\frac{12 \sin ^4(e+f x)}{a+b}+\frac{\sin ^2(e+f x)}{a+b}+\frac{\sin ^2(e+f x) (a \cos (2 (e+f x))+a+2 b)}{(a+b)^2}\right )}{\left (-a \sin ^2(e+f x)+a+b\right )^{3/2}}+\frac{8 \tan (e+f x) (a \cos (2 (e+f x))+2 a+3 b)}{(a+b)^2 (a \cos (2 (e+f x))+a+2 b)^{3/2}}-\frac{12 \tan (e+f x) ((3 a+2 b) \cos (2 (e+f x))+b)}{(a+b)^2 (a \cos (2 (e+f x))+a+2 b)^{3/2}}\right )}{384 f \left (a+b \sec ^2(e+f x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(5/2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])^(5/2)*Sec[e + f*x]^4*((Sqrt[2]*Csc[e + f*x]*Sec[e + f*x]*(Sin[e + f*x]^2/(a +
b) + ((a + 2*b + a*Cos[2*(e + f*x)])*Sin[e + f*x]^2)/(a + b)^2 - (12*Sin[e + f*x]^4)/(a + b) + (16*(a + b - a*
Sin[e + f*x]^2)*(1 - (a*Sin[e + f*x]^2)/(a + b))*((-6*a*(a + b)*Sin[e + f*x]^2)/(a + 2*b + a*Cos[2*(e + f*x)])
 + (a^2*(a + b)*Sin[e + f*x]^4)/(a + b - a*Sin[e + f*x]^2)^2 + (3*Sqrt[a]*Sqrt[a + b]*ArcSin[(Sqrt[a]*Sin[e +
f*x])/Sqrt[a + b]]*Sin[e + f*x])/Sqrt[(a + b - a*Sin[e + f*x]^2)/(a + b)]))/a^3))/(a + b - a*Sin[e + f*x]^2)^(
3/2) + (8*(2*a + 3*b + a*Cos[2*(e + f*x)])*Tan[e + f*x])/((a + b)^2*(a + 2*b + a*Cos[2*(e + f*x)])^(3/2)) - (1
2*(b + (3*a + 2*b)*Cos[2*(e + f*x)])*Tan[e + f*x])/((a + b)^2*(a + 2*b + a*Cos[2*(e + f*x)])^(3/2))))/(384*f*(
a + b*Sec[e + f*x]^2)^(5/2))

________________________________________________________________________________________

Maple [C]  time = 0.401, size = 1142, normalized size = 9.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x)

[Out]

1/3/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/a^2*sin(f*x+e)*(b+a*cos(f*x+e)^2)*(6*sin(f*x+e)*cos(f*x+e)^2*2^(
1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*
(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e
))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2
)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a-3*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*(1/(a+b)*(I*c
os(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1
/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a
+6*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/
(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos
(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*
b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b*sin(f*x+e)-3*2^(1/2)*(1/(a+b)*(I*cos(f*x+
e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(
1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a
-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b*sin(f*
x+e)-4*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a+4*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))
^(1/2)*a+cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a-3*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(
1/2)*b-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a+3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b)/(-1+cos(f*x+e))/
cos(f*x+e)^5/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(5/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.11215, size = 1584, normalized size = 13.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")

[Out]

[-1/24*(3*(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a
^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b
^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)
*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e)
)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(4*a^2*cos(f*x + e)^3 - (a^2 - 3*a*b)
*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^5*f*cos(f*x + e)^4 + 2*a^4*b*f*cos
(f*x + e)^2 + a^3*b^2*f), -1/12*(3*(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)*sqrt(a)*arctan(1/4*(8*a^2
*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e
)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)
)) + 4*(4*a^2*cos(f*x + e)^3 - (a^2 - 3*a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x
 + e))/(a^5*f*cos(f*x + e)^4 + 2*a^4*b*f*cos(f*x + e)^2 + a^3*b^2*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{4}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*sec(f*x+e)**2)**(5/2),x)

[Out]

Integral(tan(e + f*x)**4/(a + b*sec(e + f*x)**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(5/2), x)